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Abstract. The results of theoretical study of the influence of mechanical stress, electric and
magnetic fields on the conditions for magneto-elastic solitons existence and their dynamic properties
in the symmetric phase of a tetragonal antiferromagnet are presented. The conditions for the
occurrence of nonlinear magneto-elastic resonance of long and short waves (which is analogous to
the Zakharov—-Benney triad resonance) in this system are derived. The possibility of experimental
detection of this new phenomenon is discussed.

1. Introduction

Recent years have seen an intensive study of various properties of magnets with a magneto-
electric interaction. Electric and magnetic properties in these magnets are interconnected:
using an electric field one can control magnetic properties,vazelversa a magnetic field
can be used to control electric properties [1]. A magneto-electric interaction gives rise to
the appearance of the magnetizatiory induced by the electric fieldZ, or the electric
polarization P, induced by the magnetic fiel#d. The most fully studied is the linear
magneto-electric effect in antiferromagnets (AFMs), this effect being explained (if considered
phenomenologically) by the terms of the P type in the expression for the free energy density
(1 is the antiferromagnetism vector). In this cade- H, m ~ E. The proportionality factor
may reach 107 and more.

The peculiarities of acoustic properties and antiferromagnetic resonance in tetragonal
magneto-electric AFM was investigated by Tuehal [2]. It has been shown that the values
of magneto-electric largely depend on the mutual orientation of the electric and the magnetic
fields, on the magnetic anisotropy type and on the value and the sign of the magnetic anisotropy
constant in the basal plane. For example, the effect of the acoustic double refraction (lifting
the degeneracy of transverse waves) due to the magneto-electric effect may reach several per
cent. The conditions at which new effective nonlinear moduli of elasticity appear, which
are non-zero only in the case when the sample is simultaneously affected by both magnetic
and electric fields, was identified by Menshenin and Turov [3]. It is pointed out in [2, 3]
that magneto-electric effects are enhanced in the vicinity of magnetic orientational phase
transitions. However, for the latter to be achieved, sufficiently strong electric and magnetic
fields need to be applied. It has also been pointed out that a possibility of a wide variety of
nonlinear effects in centre-antisymmetric AFMs.
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Nonlinear magneto-elastic waves in magnets have been discussed without considering
magneto-electric interaction, for example, in [4-7]. It is well known that with the help of
directed pressure the point of the orientational phase transition can be approached, which may
amplify the manifestation of the magneto-electric effect. This paper reports on research of
the effects of mechanical stress, the electric and magnetic fields, on the stability of magneto-
elastic solitons and on characteristics on nonlinear magneto-elastic resonance of long and short
waves (which is analogous to the Zakharov—-Benney triad resonance) in tetragonal AFMs with
an ‘easy-plane’ anisotropy. The conditions of the Zakharov—Benney resonance of long and
short waves (long—short-wavelength resonance) are satisfied if the group velocity of a short
(spin) wave is equal to the phase velocity of the long (elastic) wave. The long and short
waves become coupled, and as a result of this slow oscillations, arising from the beating in
a spin wave, lead to the excitation of an elastic wave. An excitation of lower frequencies by
higher ones takes place, axite versa The solitons arising in this system originate from
the energy exchange between spin and elastic waves. It should be pointed out that the linear
magneto-elastic resonance (the intersection of the dispersion curves for spin and elastic waves)
is pronounced most clearly in the frequency range, where the elastic wave length is close to
that of the spin wave. In the vicinity of the intersection point the combined magneto-elastic
waves appear, which lead to the intensive dissipation and anomalous dispersion of the sound
wave.

The present paper consists of five sections. In section 2 the ground state is examined
and fundamental equations of weakly nonlinear dynamics are obtained. Section 3 looks into
peculiarities of nonlinear dynamics brought about by the interaction of the Goldstone modes,
whose evolution equation is the modified Kortweg—de Vries equation (MKdV). Section 4
focuses upon the interaction of the activation waves, whose evolution is described by the
nonlinear Schisdinger equation (NSE), as well as the Zakharov—Benney resonance.

2. The ground state and the equations of weakly nonlinear dynamics

Let us consider an unbounded tetragonal double-sublattice AFM with an ‘easy-plane’-type
anisotropy(K > 0). When deriving fundamental equations we shall proceed from the free
energy density”, which shall contain a magnetic, electropolarization, elastic, magneto-elastic
and magneto-electric contributions [3]:

1 1 1 a2 1 am)\?
Fy = 2MoHpm? — 2MomH + SKI2+ SKol217 + —E,’a§<—> + EE;nag(—m>

2 2 Bxk Bxk
_MOmHm

F =i(P2+P2)+iP2—PE
P ZKL * Y ZKH <

1 2 2 1 2 2 2
F. = §Cll(exx + ey),) + ClZexxeyy + Cralen + e_vy)ezz + §C33€ZZ + 2C44(€xz + Eyz)

2
+2Ce6ey, — Oik€ik

Fle = Bll(liexx + l)zveyy) + BlZ(lfeyy + l)z;exx) + Bl3(exx + eyy)lzz + B3lezz(l§ + 13) + B33ezzlzz
+2By4l; (el + eyzl_,,) + 23566X},lxly. (1)

For the AMF with the even magnetic structure4’ 2, = 1-472; we have:

Funp = =2Moly2(lx Py + 1y Pyym; + y3(my Pc + my Py)l; + ya(lymy +lymy) P; + ysl:m Pc].
For the AMF with the odd magnetic structute4; 2; = 1-4; 2! we have:

Fup = =2Moly2(li Py + 1y Poym_ + y3(my Py + my Pyl + ya(limy + 1ym.) Pr].
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HereH is the exchange interaction fieltl is the sublattice saturation magnetizati@and
K, are magnetic anisotropy constans,andE,, are constants of inhomogeneous exchange
interaction, H,, is magnetostatic field caused magnetic dipole—dipole interactipnCix,
B;; are tensor components of strain, elastic and magneto-elastic con@tants x, y, z);
oix IS the tensor of external elastic stressesjs the vector of elastic displacement of
the medium elements;; and; are electropolarization constants. Inasmuch as magneto-
electric interaction is determined by the following expressigy), = —2Moy;jlim ; Pk
(wherei, j, k are Cartesian coordinates) it is evident that the magneto-electric constants
Y2 = Y131 = V232, V3 = V311 _= V322, Y4 = Y113 = Y223 V5 = V333 for an even
exchange structurél 4!2, = 1°4!2)) andy, = yi2 = y231, ¥3 = Y312 = Va1,
ya = y123 = ys12 for an odd exchange structure@!2; = 1-4/2}). Inasmuch as inequality
Im| < |l] <« 1 takes place, the term with;, can be neglected. As for the effects of the
demagnetization stipulated by magnetic dipole—dipole interaction, their role will be discussed
below.

Let the strength of the magnetic fiel be directed along the-axis, which coincides
with the C4 axis. We shall apply the strength of the electric fi€ldin the easy plane along the
2, axis, i.e. along the bisector of the angle formed by.thand y-axes. A further detailed
examination is conveniently conducted for the case when the constant of the crystallographic
magnetic anisotropy in the basal plangis positive. The results obtained in this paper will
hold for the AFM with both the even and the odd magnetic structures. The unilateral stress
o (0 < 0 corresponds to compression, whereas- 0 corresponds to expansion) can be
directed in the easy plane along or perpendiculdrtdrhe direction ofE and H, as well as
the direction of the elastic stressare taken so that the linear magneto-electric effect should
have the maximal possible manifestation. In the following discussion it will be necessary to
rotate theOxy coordinate system in the basal plane by the angk i.e. thex’ axis should
be directed along 2

We shall limit ourselves to the frequency range <« y«/2HgH,, wherey is the
gyromagnetic ratio andd, = K/2M, is the magnetic anisotropy field in which the
antiferromagnetism vector retains in the easy plane. This frequency range corresponds to
magnetic fields significantly weaker than the sublattice-flopping field, which allows us to
ignore both the excitation of the branches of the electropolarizing waves spectrum and the
excitation of the optical branch of the spin-wave spectrum. At these frequencies, the electrical
polarization vector adjusts in a quasi-equilibrium way to magneto-elastic oscillations. We
shall also ignore the attenuation of both spin and elastic degrees of freedom in the system,
as well as the deviation of the antiferromagnetism vetfosm the easy plane, and we shall
assumd = l(cosy, siny, 0), wherey is the angle between the vectoandx’. From the
condition of the minimum of free density with respect to variations of the vectors of electric
polarizationP, of ferromagnetismn and elastic deformations, one can obtain an expression
for free-energy density in an equilibrium state:

F = —Mons6<eh cosy + %r CosS 2 — %cos&) (2)
whereH,,;6 = B2/2MoCes, k5 = K3 /2MoH,s6, K3 = Ko + 2Mo(H,ys — Hyye) @and K is
the constant of the crystallographic magnetic anisotropy in the basal plane, renormalized by
magnetostrictionH,,; = b?/[Mo(C11 — C12)] is the magnetostriction field; = yok | E/H,s6
is the normalized value of the electric field= H/H is the normalized value of the magnetic
field; b = Bi11 — B12; T = 08/2Bes. If the stress is directed along, thens = 1; if it is
perpendicular taE, thens = —1, which can be of importance from the point of view of
convenience in the performance of the experiment.
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Figure 1. Magnetic phase diagram. Full curves are phase transition lines; broken curves define
the borders of the respective metastable phddesndd” are symmetrical phaseg™, &g and
&> are doubly degenerated angular phases.

We shall assume th&; > 0. Figure 1 shows theh—t diagram of stability of magnetic
phases of a tetragonal AFM. As itis seen from figure t/at > 1 the symmetrical phasg°
with x = 0 is absolutely stable abEH > 0. On the contrary, at,EH < 0, the phase”™
with x = 7 is absolutely stable [2]. The transition between these phases is a phase transition
of the first kind. In the case/k; < 1 the symmetrical phase® is stable in relatively strong
electric and magnetic fields. The following inequalities represent the stability conditions of
the ground state witlr = 0:

2(t —k3)+eh >0 eh > 0. 3)

The equality sign in (3) corresponds to the stability loss line of the pthdsé he transition
between the symmetrical phase and the doubly degenerated angular phase is a phase transition
of the second kind. On theh—t plane, the pointh = 0, 7/k5 = —1 corresponds to the
critical point [8]. If t/k5 < —1, then in the angular phase™ the angley continuously
varies from zero tor. If t/k5 > —1, then the angular phase™ splits into two angular
phasesb; and®_, in which the anglg¢ varies from 0 to(z — ¢g)/2 and from(z + ¢g)/2
to 7, respectively. The transition between these two angular phases is a phase transition of
the first kind. Whenc/k3 varies from—1 to 1, the jump ofpg varies from zero tor. The
metastability domains of angular phases and ®; extend to the pointsi/k5 = £8 and
t/k3 = 5 on theeh—t plane. In figure 1, the~’ (tilde) sign corresponds to metastable
phases. The equations for the curves, which separate metastable angular phases from the
stable phasesth/ ks = £[2(z/k; + 1)/3]¥/2; metastable angular and metastable symmetrical
phaseseh/ks = £2(t/k; — 1).

The vectors of ferromagnetisme and of electric polarizatiorP have the following
components:

_ H+yu Ecosy —x/y
B 2Hg

ny :my/ :0 mz

Moyak 1 . Moyaic,
— <~ —(H- cos P, = —"=
H, ( X/v)cosy y H,

P, =0.

Po=« E+ (H — x/y)siny
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Returning to a discussion of the role of the long-range dipole—dipole magnetic interactions, at
first we notice that the interactions mentioned are insignificant in ATMs. Seddpd= 0
supposing that the wave propagates along the &xisThis is evident from the analysis of
magnetostatic equations, a geometry of the problem and above expressions for, and
m,. For the sample bounded along thaxis the energy of magnetic dipole—dipole interaction
can be reduced to the form #843m?. This brings to the substitutioN; — Hg + 47 Mo
(however,Hg > 4 My).

Let us consider nonlinear excitations relative to the ground state yvith O, the said
excitations propagating along thé axis. We shall hereafter omit the(prime) sign in
coordinates. The density of the Lagrange function has the form as follows:

Mo .2 22 1 1
L= — + MoH,,;¢| ehcosy + =(1+1)cos2 — =k, COS
ZVZHE(X c“x2) + MoHy6( € x +5(1+7)cos gk %
b . B :
— 5ty sin2y — TGGMXX CosZy — g(Sfufx + Siufz + S%ufy —u?).
Here p is the medium densityy,; = du;/ox (i = x,y,z) are the deviations of the

deformation tensor from the value in the ground state {8];= y2EjaiHg/M, is square
of the minimal phase velocity of the spin wav&, = Caa/p; S? = (C11+ C12+ 2Ceg)/2p,
S§ = (C11—C12)/2p, ko, = Ko/2MyH,,6 IS the dimensionless constant of the crystallographic
magnetic anisotropy in the basal plane (not renormalized by a magneto-elastic interaction).
We shall write out the Euler—Lagrange equations, in which nonlinear terms to the third
order for small deviationg andu,; are retained:
2b

b
92 — 8202 U,y — —0%x + —0%4x%=0
(t 2/\)uy ,OXX 3,0 xX

B

(02 — 520)u,, + —202x2 =0
0

(82 — §4,0%)u,, =0

by?Hg y2Hg
Uyy —
Mo Mo

(82 — 232+ wd)x +
1
X {2B66uxxx + ZbuxyXZ + éMOHmsG[eh + 8(1 + T) - 32k2]X3} =0. (4)

Herewy is a gap in the spectrum of the low-frequency branch (in this case quasi-ferromagnet
branch, see below) of the spin waves in the AFM:

Hms
(Z)g:yzl:yzKJ_EH+2HEHmSG<T_k;+ )i|

ms6

HI”S
:yzHEHmse[eh+2(t — k5 + >]

ms6

The minimal value of the frequeney, in the point of the phase transition determines the
so-called magneto-elastic gap for magnons [9]:

Womin = Wms =Y 2HE Hy;.
The dispersion equation for linear magneto-elastic waves is determined by the equation below:

(@ — STK*) (@* — SeA(@* — S5k (@ — 0§ — *k?) — wf, S5k?] = 0.



1058 A P Tankeyev et al

Its solution yields the following branches of the spectrum [9]:
(a) the quasi-ferromagnetic branch
w% = w(z) + sz
(b) the quasi-acoustic branches
w3 = %k +rk* ws = S2k? Wi = S3k?
where
f =c2+“’w—'2'“s§ S2=S22(1— é) r= %@2—32)322. (5)

2
0 ) 0

When approaching the point of the phase transition of the first kind from the symmetrical
phase®? into ®* (for example, by decreasing the electric field value) the speetlthe
transverse sound reduced to zero. On the other hand, in AFMs with adeht&mperature, a
situation is possible, whe$i > ¢. When approaching the phase transition point this condition
may be violated, that will mean the reversal of the sign of the dispersairthe transverse
quasi-acoustic mode when the strengths of the electric and the magnetic fields decrease.

3. Existence domain of quasi-acoustic solitons

For examining the interaction of quasi-acoustic waves it is necessary to assume that
magnetization oscillations adjust in a quasi-equilibrium manner to elastic deformations. This
means that activation waves are not excited, thus permitting the use of the version of the
reductive theory of perturbations, this version being based on coordinate expansion [10]. As
a result, for the transverse component of the deformation ténser,, we shall obtain the
MKdV:

U U . 9

28— —r——+q—U>=0.

ot ac3 ac
5b*y B HE H,g 8 52— 52— 52
20V ZETms ‘G[eh+—<r+—l — 66)}.

20Mgzwg Si—8

Here¢ = x — St. The remaining variables are expressed in term#& oh the following
manner:

g = (6)

by?Hg _ b?Besy*H} )
Mow?  pME(S? - S2)wh
If the conditionrg < O is satisfied [5], then the MKdV (6) has soliton solutions. The
single-soliton solutions is determined by the formula [10]:
A
U= ——
ch(§/A)

a=2/2 Ao ML
q 25\

& =x—x0— (S+M)r; A > 0 andxg are material parameters. The parameté equal to
the difference between the soliton velocity and the speed of s§uiitie applicability of the
perturbations theory is conditioned hy< S. In the case under consideratipn> 0, and

U Uy

()

where
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A4, 10%cm
4 —_—

0 5 10 15 20 25
eh+1-1,

Figure 2. Dependence on— 3 +eh of the ratio of the MKdV soliton widthA to its amplitudeA.

solitons do exist, if < 0, i.e.S > ¢. This condition, taking into account (5), can be rewritten
as:

* 2
vox ) EH . (a(SHmse, B &) - 2H,,c S, > e

Hg B My 82 —¢2
In the case < 11, where
H,c?
Hy6(S5 — ¢2)

the soliton can exist only above a certain critical vadieequal to 27; — 1), andvice versa
att > 11, the soliton can exist at» > 0. Therefore, if a stress is applied which is somewhat
smaller tharry, itis possible to control the soliton stability using the weak electric and magnetic
fields. Inthe case aof > 7;, due to a change of the pha®@ stability domain, only sufficiently
strong elastic and magnetic fields can affect the soliton existence.

Figure 2 presents the graph illustrating the dependence of the ratio of the solitorrwidth
to its amplitudeA upon stress, electric and magnetic fieldst ¥ 7, + eh tends to zero, then
r — 0. Therefore, the soliton width also tends to zero. The soliton amplitude never reaches
zero. In spite of the fact that the reliable experimental evidences for observation of soliton
states in the investigated low-symmetric AFMs are lacking at present, nevertheless we cite
certain numerical estimates which give strong evidence for a possibility of a detection of the
above indicated interesting effects. In our opinion for this purpose trirutiles GeCx and
VoWOg type [11-13], rare-earth phosphates and vanadates—compounds of the &adPO
GdVO, type [14-16]—are promising materials. We used the typical values of the crystal
parameters for numerical estimatesfy ~ 150 Oe; Hr ~ 150 kOe;p ~ 5 g cnT3;
b, Bes ~ 5 x 1P erg cm3; C11 ~ 2 x 102 erg cm3; C1» &~ 0.9 x 10* erg cnt?;
Ces ~ 0.5 x 102 erg cn3; ¢ ~ 2 x 10° cm s'1; A ~ 100 cm s%; k3 ~ 30 (this corresponds
to Ko ~ 10 erg cn®); ok, ~ 0.3 (this corresponds to magneto-electric susceptibility
a ~ 3 x 1074 in this case the measurement unit of the standardized value of the electric field
e in Sl corresponds approximately to 10 kV-k). At 2 = 0.05 (H = 7.5 kOe),r = 35
(0 = 35 MPa) anck = 200 (E = 20 kV cntl), the soliton parameters are the following:
amplitude~2 x 1078, width ~4 x 10~4 cm, propagation velocity-3 x 10° cm s%, the
amplitude of angular oscillations of the AFM vector is about 0.03.

The obtained results are true if the conditions are satisfied of the applicability of the system
of equations in (4), i.eA > ag (ao is the crystal's lattice constant) afwh| <« |I| =~ 1. At
r — 0, these conditions are violated. On the other hand,-at 0, within the framework of

11:k>2k+
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the examined field geometry, the transverse elastic waymcomes dispersionless, and the
solitons of the (7) type do not exist. As has been shown above, with the help of the electric and
magnetic fields one can achieve> 0, i.e. the disappearance of the indicated type of solitons.

4. Existence domain of activation solitons and of Zakharov—Benney magneto-elastic
resonance

In the case when the coupling between gapless and activation waves (see second and fourth
equations of system (4)) is quadratic in magnetization, one can expect that the beating in the
activation wave will excite the modes with zero activation energy (gapless or Goldstone’s
modes) [17]. This process is a resonance process and was first discovered by Benney. The
corresponding system of nonlinear equations was first obtained by Zakharov [18], whereas in
[19, 20] it has been shown that it is integrable by the method of the inverse scattering problem.
When Zakharov—Benney resonance originates in the AFM, the short-wave quasi-ferromagnetic
modes will excite long-wave acoustic modes.

For the purpose of examining the interaction of activation waves, as well as of the
interaction of activation and Goldstone’s waves in the vicinity of Zakharov—Benney long-
to short-wavelength resonance, in the system of equations (4) it is necessary to pass over from
the dynamic variableg andu,, to normal variableg andu;. Itis necessary then to assume
thatu; = 0 and to average the thus obtained system of equation with respect to the fast spatial
and temporal oscillations, choosigg= W exp[i(wit — kx)] + cc [6]. As a result we shall
arrive at the system of equations:

2B
(02 — 200,y + 202 W12 = 0
P

0, — 2f

[ Besy?Hp
w1

1w?
V- -3 \wPy =0 8
Mowr Uxx 4w1| | ()

32 +ic19, ¥ —

where
w2 = y?Hg Hyoleh + 8(t — 3 — 4k + 4H,,s/ Hyso)].

In the system of equations (8), if we pass over to the coordinate system [10] which moves
with the group velocity of activation mode§ & x — cit; ¢? # S%; ¢1 = dwy/dk) we can
obtain the NSE:

i0,W — iag\y —golV?P¥ =0
w1
2 2
HgH,,, 4H,,, 25,
go= L TETmO) prg(r — 3+ g4 206 ) |
46()1 HmsG S]2_ _C%

At go > 0, according to Lighthill's criterion [10], linear activation waves become
modulationally unstable as regards formation of the envelope solitons—the bions. At small
values of the wave vector{ — 0), the condition of the envelope solitons existence can be
described by the expression:

v’k EH . 8(08Hm6 2K5 387 — 2S§6H

+4H,,, — ms6 | > 0. 9
Hz 2Bes Mo 52 6) ©

If T < 15, where

382 282 H,,
rz=4(k§+ L0 >
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then the bion can exist only above some critical valughafqual to §z, — ) and,vice versaat
T > 19, the bion can existat: > 0. If, therefore, a stress is applied which is somewhat smaller
thant,, the bion’s stability can be controlled with the help of weak electric and magnetic fields.
If k3 is sufficiently great, them, can turn out to be very great and thus unattainable in actual
conditions. The condition (9) will then be violated. In this case the examination should be
conducted in the conditions as followg: is directed along the former unaccentedxis for
the odd magnetic structure and along the unacceyvaxis for the even magnetic structure,
whereas the stressis directed along or perpendicular i If such is the case, the condition
of bion existence similar to (9) will be fulfilled.

The bion solution of the NSE can be presented as [10]

_ do expli(kof — wet)]
ch[(1/ A1) (& +ut)]

f Vo 1 ( 5 v2wy
A= |—— ko= — we = = | gody — .
\ wig0d3 f 2\ f

At h = 0.05 (H = 7.5 kOe),r = 120 (¢ = 120 MPa) and = 200 (E = 20 kV cmi™%),
the soliton velocity with respect to the speed of the longitudinal saurd 100 cm s?,
amplituded, ~ 0.05, the soliton parameters are the following: width ~ 5 x 10~* cm;
ko ~ 70cnm Y wg ~ 3x 1P 571 (wg/wo ~ 10~%). For these calculations the above-mentioned
values of crystal parameters (see section 3) have been used.

Magneto-elastic long—short wavelength Zakharov—Benney resonance is realized when
the phase velocity of dispersionless quasi-acoustic wave is equal to the group velocity of the
activation wave [10]:

where

dw
Sl =C1 = 8_kl (10)
When the condition (10) is satisfied, the system of equations (8) boils down to the integrable
system of Zakharov—Benney [10]:

v 92w

I— —a1—— —aou,, ¥V =0
ot 9E2

RIT. FINIE

“ — a3z | | =0.

ot dE

Herea; = f/2a)1, ap = )/ZHEBGG/(Moa)l), az = 366/(,051) ands =Xx —c1l.
Equality (10) can only be satisfied when the inequalify< f holds, i.e.

EH 8H,, K S2+ 2 §2
g VLD (20Tme D2 )| 402 C Ty (11)
HE Bee Mo Sl — C2

Here the + sign corresponds to the case S;, whereas the- sign corresponds to the case

¢ < 81. Thus, atS; < ¢, i.e. when the minimal phase velocity of spin waves is greater than
the velocity of the longitudinal sound, the Zakharov—Benney resonance, as is seen from (11),
exists in the stability area of the pha®€ andvice versaatS; > ¢, two cases are possible. If

§2 > S5+ ¢?
no resonance exists. When the inequalities

? <SP <85=c? (12)
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Figure 3. Dependence of the resonance value of the wave vector of the spin wave on electric and
magnetic fields at the stress valug2— 7) = 5: 1, atSy/c ~ 3.5; 2, atS1/c ~ 1.05.

are satisfied, the resonance can exist in the limited area of varying stress, electric and magnetic
fields. In this case if stress> 13, where

Hys S3+c2— §2
H,56 S]2_ —c?

then no resonance exists. df< 3, the values of the electric and of the magnetic fields at
which the resonance does exist are limited:

‘L’3=k>2k+

eh < 2(13 — 7).
From the condition (10) the resonance wave number of the activation wave is obtained:
S
Ky =~ (13)

Jri—sy

In the case (12) ath — 2(t3 — 7) the value off tends toS?, i.e. the expression in the
denominator (13) tends to zero, and the wave vector of the activation Ayave oo. This
means physically that the group velocity of the activation wave cannot be compared with the
phase velocity of Goldstone’s wave at any value of the wave véctand the condition (10)

is not satisfied. Therefore, at ~ 2(r3 — 7) the resonance vanishes. Figure 3 shows the
dependence of the resonance value of the wave vector of the spirkyvamehe electric and
magnetic fields at@s — ) = 5. For this case the minimal phase velocity of the spin waves
was taken as¢ & 6 x 10° cm s (S1/c ~ 1.05), whereas the rest of the crystal's parameters
were similar to those specified in section 2. The analysis shows that if the condition (12) is
satisfied (the AFM with a low Bel temperature), the resonance value of the wave vector of
the spin wavek, can be changed by an order of the magnitude: ¥ S;, thenk, is hardly
affected by the electric and magnetic fields.

All the results obtained in this paper are also true for the case when the constant of
the crystallographic magnetic anisotropy in the basal plane, which has been renormalized by
magnetostriction, is less than zero only for other orientations of the electridiafd] stresses
o. In the initial coordinate systems (see (1)), the electric field should be directed along the
x-axis for the odd magnetic structure, and along thexis for the even magnetic structure,
whereas the stress—in the basal plane along or perpendicular to the electric field yaadithe
should be taken as the direction of the wave propagation. In this case, only the constants in
the formulae of this paper will have to be modifieBgs should be replaced with, b should
be replaced with(— Bgg), S1—Wwith S11, S2 <> Ses, Hinse <> Hus, k3 With (—k3), and in the
expression fot, 2Bgs should be replaced with.
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5. Conclusion

The results obtained in this study enable one to make a conclusion that the electtit ifseld
another regulator, along with magnetic fidlland mechanical stress of both the resonance

and non-resonance nonlinear processes, which may occur in easy-plane AFMs. The effect
of E and H is especially pronounced in the vicinity of orientational phase transitions, but
for the latter to be achieved, the valuBsand H may have to be quite great. To achieve

the condition of the orientational phase transition, the uniaxial directed streas be used.

For the MKdV solitons, the NSE bions and the Zakharov—Benney solitons, the critical values
of stresses have been identified at which the influence of the magneto-electric effect is most
strongly pronounced.

Since the MKdV soliton stability is determined by the sign of the difference in velocity
between a transverse sound wave and the minimal phase velocity of spin waves, in AFMs
with a low Neel temperature the sign of this difference can be reversed using the electric and
magnetic fields, thus effectively controlling stability of magneto-elastic solitons described by
the MKdV.

The stability of the bionic solution of the NSE is determined by the sign of the self-action
coefficient of the activation modes. The paper has demonstrated that using the electric and
magnetic fields this sign can be reversed. For the AFMs with a l@el Kemperature, in
which inequalities (12) are satisfied, the resonance may exist within the limited domain of
varying stress, electric and magnetic fields. This domain can be transcended with the help of
the electric and magnetic fields.

As s already mentioned above (see section 3), the following AFMs may display the effects
as discussed above: trirutiles of the,GxO;, V,WOg type [11-13] rare-earth phosphates
and vanadates—compounds of the HoR@d GdVQ type [14-16]. At the present time
the details of the linear spectrum of the spin waves and the conditions of their excitation
for example GdCuQy [21] are known. Also, convincing evidences for the presence of the
magneto-electric effect in &&uQ, [R = Gd, Nd or Sm] [22] are present. Moreover, as is
shown above the low-symmetric (tetragonal) AFMs are superb model media for investigation
of essential nonlinear magneto-elastic phenomena. The effects discussed above are especially
important in the vicinity of the points of spin-reorientation phase transitions. It is to be hoped
that the effects predicted in this paper will be discovered in the near future.
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